Zeige Ergebnisse 201 - 220 von 749
2019
Ihler, S., Laves, M.-H., & Ortmaier, T. (2019). Towards Manifold Learning of Image-Based Motion Models for Oscillating Vocal Folds. Vorabveröffentlichung online. https://openreview.net/forum?id=S1xTGVhE5N
Ihlers, S., Schulz, JP., Laves, M.-H. V., Kahrs, L. A., & Ortmaier, T. (2019). Towards Patient-Specific Neural Networks for Image-Based Motion Estimation. In Computer-Assisted Radiology and Surgery (CARS)
Ihlers, S., Seifert, J. M., Laves, M.-H. V., Kahrs, L. A., Ptok, M., & Ortmaier, T. (2019). Vergleichsstudie von objektbasiertem Hochgeschwindigkeits-Tracking der Glottis. In Computer- und Roboter-Assistierte Chirurgie (CURAC)
Knöchelmann, E., Tappe, S., Ortmaier, T., & Mannel, A. (2019). Cost-optimized control of dc microgrids based on characteristic diagrams. In Proceedings - 2019 IEEE International Conference on Industrial Technology, ICIT 2019 (S. 1685-1691). Artikel 8755240 (Proceedings of the IEEE International Conference on Industrial Technology; Band 2019-February). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICIT.2019.8755240
Knöchelmann, E., Männel, A., Goetjes, B., Tappe, S., & Ortmaier, T. (2019). Decentralized Cost-Optimized Fuzzy Control of DC Micro Grids. In 3rd IEEE International Conference on DC Microgrids (ICDCM 2019) IEEE. https://doi.org/10.15488/10364, https://doi.org/10.1109/ICDCM45535.2019.9232741
Knöchelmann, E., Kotlarski, J., Böhm, T., Tappe, S., & Ortmaier, T. (2019). Potential of Energy Storage Systems for Industrial Robots. In T. Schüppstuhl, K. Tracht, & J. Roßmann (Hrsg.), Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter (S. 168-177). Springer Vieweg. https://doi.org/10.1007/978-3-662-59317-2_17
Kortmann, K.-P., Seel, A., Zumsande, J., Wielitzka, M., & Ortmaier, T. (2019). Entwicklung eines stochastischen Werkstücktrackings für (teil-)automatisierte Produktionsprozesse. In Fachtagung Mechatronik 2019 (S. 225-230). University of Paderborn. https://doi.org/doi.org/10.17619/UNIPB/1-775
Kortmann, K.-P., Seel, A., Zumsande, J., Wielitzka, M., & Ortmaier, T. (2019). Entwicklung eines stochastischen Werkstücktrackings für (teil-)automatisierte Produktionsprozesse. 225-230. Beitrag in Fachtagung Mechatronik, Paderborn, Nordrhein-Westfalen, Deutschland. https://doi.org/10.17619/UNIPB/1-775
Kundrat, D., Schoob, A., Piskon, T., Grässlin, R., Schuler, P. J., Hoffmann, T. K., Kahrs, L. A., & Ortmaier, T. (2019). Toward Assistive Technologies for Focus Adjustment in Teleoperated Robotic Non-Contact Laser Surgery. IEEE Transactions on Medical Robotics and Bionics, 1(3), 145-157. Artikel 8777169. https://doi.org/10.1109/tmrb.2019.2931438
Laves, M. H., Bicker, J., Kahrs, L. A., & Ortmaier, T. (2019). A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation. International journal of computer assisted radiology and surgery, 14(3), 483-492. https://doi.org/10.48550/arXiv.1807.06081, https://doi.org/10.1007/s11548-018-01910-0
Laves, M. H., Ihler, S., Kahrs, L. A., & Ortmaier, T. (2019). Deep-learning-based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography. In B. Fei, & C. A. Linte (Hrsg.), Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling Artikel 109510R (Progress in Biomedical Optics and Imaging - Proceedings of SPIE; Band 10951). SPIE. https://doi.org/10.1117/12.2512952
Laves, M.-H., Ihler, S., & Ortmaier, T. (2019). Deformable Medical Image Registration Using a Randomly-Initialized CNN as Regularization Prior. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1908.00788
Laves, M.-H. V., Latus, S., Bergmeier, J. N., Ortmaier, T., Kahrs, L. A., & Schlaefer, A. (2019). Endoscopic vs. volumetric OCT imaging of mastoid bone structure for pose estimation in minimally invasive cochlear implant surgery. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1901.06490
Laves, M. H., Ihler, S., Ortmaier, T., & Kahrs, L. A. (2019). Quantifying the uncertainty of deep learning-based computer-aided diagnosis for patient safety. Current Directions in Biomedical Engineering, 5(1), 223-226. https://doi.org/10.1515/cdbme-2019-0057
Laves, M.-H., Ihler, S., Kahrs, L. A., & Ortmaier, T. (2019). Retinal OCT disease classification with variational autoencoder regularization. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1904.00790
Laves, M. H., Ihler, S., Kahrs, L. A., & Ortmaier, T. (2019). Semantic denoising autoencoders for retinal optical coherence tomography. In European Conference on Biomedical Optics, ECBO_2019 Artikel 11078_43 (Optics InfoBase Conference Papers; Band Part F142-ECBO 2019). OSA - The Optical Society. https://doi.org/10.1117/12.2526936
Laves, M.-H., Ihler, S., & Ortmaier, T. (2019). Uncertainty Quantification in Computer-Aided Diagnosis: Make Your Model say "I don't know" for Ambiguous Cases. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1908.00792
Laves, M.-H., Ihler, S., Kortmann, K.-P., & Ortmaier, T. (2019). Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1909.13550
Mannel, A., Tappe, S., Knöchelmann, E., & Ortmaier, T. (2019). Investigation on an AC grid failure handling of industrial dc microgrids with an energy storage. In Proceedings - 2019 IEEE International Conference on Industrial Technology, ICIT 2019 (S. 1710-1716). Artikel 8755017 (Proceedings of the IEEE International Conference on Industrial Technology; Band 2019-February). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICIT.2019.8755017
Männel, A., Knöchelmann, E., Tappe, S., & Ortmaier, T. (2019). State of Charge Based Characteristic Diagram Control for Energy Storage Systems within Industrial DC Microgrids. In 2019 IEEE Third International Conference on DC Microgrids (ICDCM) Artikel 9232876 Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.15488/10382, https://doi.org/10.1109/ICDCM45535.2019.9232876