Forschungsprojekte

Robotik & autonome Systeme

  • Entwurf energieeffizienter mechatronischer Systeme durch Kopplung automatischer Steuerungssynthese und Trajektorienplanung
    Die Reduzierung des Energieverbrauchs ist ein großes Anliegen in industriellen Produktionssystemen. Ein Ansatz ist die Rückgewinnung der Bremsenergie von Roboterachsen. Im Rahmen dieses Projektes wird an einer automatisierte Methodik geforscht, welche aus drei Teilen besteht: Eine szenariobasierte Sprache zur flexiblen Spezifikation des diskreten Produktionssystemverhaltens, ein automatisiertes Verfahren zur Synthese optimaler Steuerstrategien aus solchen Spezifikationen, einschließlich der Generierung von SPS-Code, und ein Verfahren zur detaillierten Trajektorienoptimierung.
    Team: M. Sc. Elias Knöchelmann
    Jahr: 2013
    Förderung: Deutsche Forschungsgemeinschaft (DFG)
  • Vollaktuierter elektromagnetischer Biegeaktor für endoskopische Anwendungen
    Ziel dieses Projektes ist, die Nachteile bestehender Endoskop-Systeme, in Bezug auf Handhabung und Verletzungsrisiko für den Patienten, durch ein neuartiges Aktuierungskonzept zu kompensieren. Gegenstand der Untersuchung sind zunächst die Entwicklung geeigneter Aktoren, deren kinematische und dynamische Modellierung sowie die Implementierung einer geeigneten Steuerung und Regelung. Die Arbeit wird in enger Kooperation mit dem Institut für Antriebssysteme und Leistungselektronik (IAL) durchgeführt.
    Team: M. Sc. Svenja Spindeldreier (geb. Tappe)
    Jahr: 2013
    Förderung: DFG und Caroline Herschel Programm des Hochschulbüro für ChancenVielfalt
    Laufzeit: 2013-2019
  • "3. Arm" - Handwerker-Kraftassistenzsystem mit adaptiver Mensch-Technik-Interaktion
    Das Projektvorhaben widmet sich der Entwicklung eines Assistenzsystems zur Unterstützung bei Arbeiten mit schweren Elektrowerkzeugen. Grundlage ist dabei eine mechatronische Konstruktion ("3. Arm"), die am Körper des Nutzers über eine Tragekonstruktion befestigt ist. Neben der physischen Unterstützung erfüllt das System kognitive Assistenzfunktionen. Somit dient das System einerseits der Arbeitserleichterung (Reduktion der auf Arme und Schulter wirkenden Kräfte) und andererseits der Steigerung der Arbeitseffizienz und Arbeitsqualität.
    Team: Dipl.-Ing. Kathrin Nülle
    Jahr: 2014
    Förderung: Bundesministerium für Bildung und Forschung (BMBF)
    Laufzeit: 3 Jahre
  • roboterfabrik
    Um Hannover als einen führenden Robotik-Standort zu etablieren, wurde an der Leibniz Universität in Kooperation mit der Region Hannover und dem Roberta Regiozentrum Hannover das Gemeinschaftsprojekt Roboterfabrik ins Leben gerufen. Die Roboterfabrik verfolgt einen kontinuierlichen Ansatz zur Ausbildung sogenannter Robotic Natives, der in der Schule beginnt und an der Universität fortgesetzt wird.
    Team: Dipl.-Ing. Vincent Modes
    Jahr: 2016
    Förderung: Region Hannover
    Laufzeit: 5 Jahre
  • Haley - Hydraulischer schlangenartiger Roboter für die Endoskopie
    Endoskopische Verfahren für Diagnostik und Therapie verändern die Medizin nachhaltig. Für einen erfolgreichen Eingriff müssen zwei wichtige Faktoren erfüllt sein: Um schwer zugängliche Gebiete erreichen zu können, ist eine gute Manövrierbarkeit nötig. Zusätzlich erfordert der Eingriff im Zielbereich eine hohe Struktursteifigkeit, um Manipulationskräfte aufnehmen zu können und dem Arzt eine feste Arbeitsplattform zur Verfügung zu stellen. Heutige Endoskope können jedoch nicht beide Anforderungen gleichzeitig erfüllen. Es werden entweder rein starre oder rein flexible Endoskope verwendet, äußerst selten sind – selbst in der Forschung – versteifbare Mechanismen anzutreffen. Als Brückenschlag zwischen flexiblen und starren Robotern soll daher ein hydraulisch aktuiertes, schlangenartiges Endoskop in dem HALEy Projekt erforscht werden.
    Team: M. Sc. Tim-Lukas Habich
    Jahr: 2020
    Förderung: Deutsche Forschungsgemeinschaft (DFG)
    Laufzeit: 01.10.2020 - 30.04.2023

Identifikation & Regelung

  • SyMoLearn - Physikalische Modellierung & Maschinelles Lernen: Symbiose zur Optimierung mechatronischer Systeme
    Modellbasierte Verfahren haben in den vergangenen Jahrzehnten innerhalb der Ingenieurswissenschaften und somit auch der Mechatronik zu einer weitreichenden Gütesteigerung dynamischerSysteme geführt. Die häufig verwendete pysikalische Modellbildung erhöht das Systemverständnis und ermöglicht damit eine Verbesserung der Beobachter- und Regelungsstrukturen. Die Genauigkeit der Modellierung ist dabei prinzipbedingt auf den Detailgrad der physikalischen Modelle beschränkt. Eine Genauigkeitssteigerung würde nur mit erhöhtem Detailgrad und somit höherem Rechenaufwand möglich sein. Einen alternativen Ansatz zur physikalischen Modellierung bieten Verfahren des Maschinellen Lernens. Diese Verfahren können gleichermaßen für die Modellierung, darüber hinaus aber auch direkt für Beobachtung und Regelung dynamischer Systeme eingesetzt werden. Dabei bieten sie das Potential den maximalen Informationsgehalt der erfügbaren Daten des jeweiligen Systems auszunutzen und somit eine Genauigkeitssteigerung zu erreichen. Demnach ermöglichen sie in diesen Bereichen eine sprunghafte Verbesserung der Güte. Maßgebliche Nachteile bestehen jedoch in dem Verlust der physikalischen Interpretierbarkeit der Modelle sowie der zumeist Notwendigkeit großer Mengen an Daten. Um die beschriebenen Vorteile zusammenzuführen und die Nachteile zu beseitigen, bietet sich eine Symbiose beider Verfahren an. Dabei wird eine hybride Verwendung ausgenutzt, um beispielsweise eine verbesserte Genauigkeit unter Beibehaltung der physikalischen Interpretierbarkeit zu ermöglichen. Der Anteil des jeweiligen Verfahrens ist variabel und abhängig von der betrachteten Zielgröße und Anwendung zu wählen. Das Ziel ist somit eine Optimierung mechatronischer Systeme durch die Hinzunahme von Verfahren des Maschinellen Lernens. Die erarbeiteten Verfahren werden an zwei verschiedenen Prüfständen entwickelt und analysiert. Dabei wird zum einen ein grundlegendes Systeme, anhand eines inversen Doppelpendels betrachtet. Zum anderen dient ein elektrisch angetriebenes Serienfahrzeug als anwendungsnaher Versuchsträger. Je nach Prüfstand werden unterschiedliche Zielgrößen adressiert und die entsprechende Kombination der Verfahren optimiert. Schließlich werden die Methoden auf die Echtzeitsysteme der Prüfstände übertragen. Abschließend werden die erarbeiteten Herangehensweisen mit bestehenden Verfahren verglichen und die verbesserte Güte aufgezeigt.
    Team: Zygimantas Ziaukas
    Jahr: 2020
    Förderung: Leibniz Young Investigator Grant
    Laufzeit: 2 Jahre

Medizintechnik & Bildverarbeitung

  • OPhonLas: OCT-geregelte Laserablation bei Stimmlippen-Phonation
    Im Rahmen dieses EFRE-geförderten Projektes soll ein rigides, anatomisch geformtes Laryngoskop entwickelt werden, das mit einem steuerbaren Ablationslaser ausgestattet ist. Neben der Anwendung auf ruhenden Stimmlippen soll ein Laserschnitt auch während einer Phonation–also auf schwingenden Stimmlippen–durchgeführt werden. Dadurch wird die Behandlung bestimmter Pathologien ermöglicht und der funktionelle Therapieerfolg direkt sichtbar gemacht. Die hohen Anforderungen an die Echtzeit-Regelung des Lasers setzen die Fusion von Stereobilddaten und optischer Kohärenztomographien voraus.
    Team: Sontje Ihler, M. Sc., Max-Heinrich Laves, M. Sc.
    Jahr: 2017
    Förderung: EFRE (Europäischer Fonds für regionale Entwicklung)
    Laufzeit: 3 Jahre
  • Indiheart - Entwicklung eines 3D-Bio-Extrusions-Druckers zur Fertigung individualisierter Herzmuskelimplantate für die Therapie von Herzinsuffizienz
    Im Rahmen dieses interdisziplinären Projekts wird mit der Universitätsmedizin Göttingen (Leitung Prof. Dr. med. Wolfram-Hubertus Zimmermann), dem Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen (Leitung: Prof. Dr. rer. nat. Eberhardt Bodenschatz) sowie dem Deutschen Primatenzentrum in Göttingen (Leitung: Prof. Dr. med. vet. Rabea Hinkel) an der Entwicklung individualisierter Herzmuskelimplantate geforscht. Die durch die Implantate aufgebrachte Kraft sollen den Herzmuskel bei Insuffizienz bestmöglich unterstützen und die Pumpleistung bestmöglich wiederherstellen. Hauptaugenmerk der Forschung am imes stellt dabei die Entwicklung eines roboterbasierten, vollsterilisierbaren 3D Bio-Extrusions-Druckers sowie dessen Steuerung dar. Der Druckprozess soll weiterhin automatisiert werden, um Präzision und Qualität des Herzgewebe sicherstellen zu können.
    Team: Leon Budde, M. Sc.
    Jahr: 2021
    Förderung: BMBF