Projects

Robotik & autonome Systeme

  • Design of Energy Efficient Mechatronic Systems based on Automated Controller Synthesis and Trajectory Planning
    Reducing the energy consumption is a major concern in industrial production systems. One approach is recuperating the braking energy of robot axes. We therefore propose an automated methodology that consists of three parts: A scenario-based language to flexibly specify the discrete production system behavior, an automated procedure to synthesize optimal control strategies from such specifications, including PLC code generation, and a procedure for the detailed trajectory optimization.
    Team: M. Sc. Elias Knöchelmann
    Sponsors: German Research Foundation (DFG)
  • Planning of Energy-Efficient Trajectories with Utilization of Energy Storage and Energy Interchange between Electrical Drives
    In multiple-axis applications, the direct current links of the utilized frequency converters can be connected for temporary energy storage and for energy interchange between different electrical drives respectively. On this background, the research objective is the analysis of potentials for planning optimal trajectories to increase energy efficiency of such applications.
    Team: Dipl.-Ing. Christian Hansen
    Year: 2010
    Sponsors: German Research Foundation (DFG)
  • Improving the Performance of Parallel Manipulators using Reconfigurable Mechanisms based on Kinematic Redundancy
    The goal of this research project is to increase the singularity-free workspace of parallel kinematic structures through kinematic redundancy and simultaneously to improve their accuracy, stiffness, and dynamics. In addition to appropriate analyzing and evaluation methods, procedures for the optimal open- and closed-loop control of kinematically redundant mechanisms with a variable structures have to be developed and applied in practice.
    Team: Dipl.-Ing. Jens Kotlarski
    Year: 2010
    Sponsors: German Research Foundation (DFG)
  • Development of instruments for laparoscopic single-site surgery
    In laparoscopic surgery, the abdominal cavity of the patient is opened through a small incision. In the created access a laparoscope is inserted to illuminate and optically detect the internal organs and indicate it to the surgeon by an appropriate visual representation. In single-site surgery beside the laparoscope at least two other instruments for tissue manipulation are inserted through the same opening into the abdominal cavity. Where such access is located in the navel, the scar is barely visible later. However, besides the resulting good cosmetic result, the single-port laparoscopy has the advantages of a low blood loss and a short recovery time. To expand the applications for this new surgical technique medical systems are needed. This should in particular have a high mobility of the end-effector in a large collision-free workspace.
    Team: Dipl.-Ing. Jan-Hinnerk Borchard
    Year: 2011
  • Modularly structured motion control system for robotics and handling.
    In this project, an easy to use, modularly structured and thus flexible platform for the control of various robotic applications is being developed. In addition to established systems, such as SCARA, articulated or delta kinematics, different interfaces offer the ability to control custom-made kinematics. The aim is to simplify the programming and commissioning of complex, multi-axis manufacturing machines.
    Team: Dipl.-Ing. Julian Öltjen
    Year: 2012
    Sponsors: Lenze Automation GmbH
  • Electromagnetic bending actuator for endoscopic applications
    The main objective of this project is aimed at the disadvantages of existing endoscopic systems which consider handling and risk of injury to the patient. The development of a new actuator, the modeling of kinematics and dynamics as well as the implementation of suitable control algorithms should compensate the aforementioned criteria. The work will be carried out in close cooperation with the Institute of Drive Systems and Power Electronics (IAL).
    Team: M. Sc. Svenja Spindeldreier (née Tappe)
    Year: 2013
    Sponsors: DFG and Caroline Herschel Program of the Equal Opportunities Office
    Lifespan: 2013-2019
  • "3rd Arm" - Craftsmen-Force-Assistence with adaptive Human-Machine Interaction
    Regarding an aging work force with higher requirements for work efficiency, a force assistence system is developed. The system is based on a mechatronic structure ("3rd arm"), which is fixed to the body of the user via a supporting construction. Apart from the physical support the system meets cognitive assistance functions. Thus, it provides force support on the one hand and on the other hand the increase in work efficiency and quality of work.
    Team: Dipl.-Ing. Kathrin Nülle
    Year: 2014
    Sponsors: German Federal Ministry of Education and Research (BMBF)
    Lifespan: 3 years
  • Energy efficient path planning for industrial robots
    This project focuses on improving the energy efficiency of industrial robots by optimising the path planning algorithms. Intelligent path planning approaches can increase the energy efficiency by avoiding unfavourable operating points or by utilising the eletrical as well as the mechanical couplings of the axes. In order to optimise the path, it is necessary to simulate the comprehensive drive system as well as the robot's mechanics. The energy-optimal path is determined using non-linear optimisation algorithms.
    Year: 2015
    Sponsors: Industry
  • roboterfabrik
    In order to establish Hanover as a leading venue for robotics, the project roboterfabrik was launched as a cooperation between Region Hannover, Leibniz Universität and Roberta Regiozentrum Hannover. The roboterfabrik pursues a continuous approach for the education of so-called Robotic Natives, spanning from school to university.
    Team: Dipl.-Ing. Daniel Kaczor
    Year: 2016
    Sponsors: Region Hannover
    Lifespan: 5 years

Identifikation & Regelung

  • On-Line identification of control relevant system parameters electrically driven mechanical systems
    The primary objective of this research project is to determine the main parameters of an electric drive system coupled with mechanics, without use of special trajactories and without additional sensors but by observing the identifiability of the parameters on the fly. The basis is a real-time model of the mechatronic system.
    Team: M. Sc. Dipl.-Ing. (FH) Daniel Beckmann
    Year: 2011
    Sponsors: Forschungsvereinigung Antriebstechnik (FVA)
  • Vehicle Vibration Analysis and Compensation
    A current project at imes is dealing with vehicle oscillations in automobiles. The research plan aims to find and analyze causes of vibration in the vehicle, in order to take appropriate measures – control strategies – to reduce or avoid vibrations
    Team: M.Sc Simon Eicke
    Year: 2011
    Sponsors: IAV GmbH
  • Analysis of vehicle drive-train vibrations
    A current project is the analysis of vehicle drive-train vibrations in the powertrain of a passenger car. The aim of the research project is to analyse individual phenomena and identify their causes. This knowledge can be used in order to find suitable software or hardware measures that reduce or avoid this vibrations. This work is being carried out as part of an industrial project with IAV GmbH.
    Team: M. Sc. Eduard Popp
    Year: 2015
    Sponsors: IAV GmbH
  • iTracC - Intelligent Traction Control
    The goal of the iTracC project is to increase driving safety in vehicles with electrified powertrains by optimizing traction control based on adaptive powertrain and friction models.
    Team: M. Sc. Mark Wielitzka, M. Sc. Alexander Busch
    Year: 2015
    Sponsors: Bundesministerium für Wirtschaft und Energie (BMWi)
  • RoCCl - Road Condition Cloud
    As part of the DFG-funded project RoCCl, a time-varying map, the Road Condition Cloud, is developed in cooperation with the Institute of Automotive Engineering of the TU Braunschweig. Therefore the road condition with additional confidence will be estimated by probability-based data fusion of various heterogeneous information from onboard and environmental sensors and transferred to the card. The communication with the RoCCl thus offers the possibility to correctly initialize driver assistance systems with regard to the current road condition at any time.
    Team: M. Sc. Alexander Busch
    Year: 2018
    Sponsors: Deutsche Forschungsgemeinschaft (DFG)
    Lifespan: 02/2018 - 01/2021
  • Prozessmonitoring in der Produktionstechnik (ProMoPro)
    Within this ERDF-funded project, universal tools and methods for the digitalization of production plants with high energy consumption will be created. The comprehensive acquisition of heterogeneous plant and process data enables the partitioning of the entire process into suitable sub-processes, their description through meaningful characteristics and the learning of mathematical models in order to describe the effects of the sub-processes on various target parameters (e.g. product quality and energy consumption).
    Team: Karl-Philipp Kortmann, M. Sc., Johannes Zumsande, M. Sc.
    Year: 2018
    Sponsors: ERDF (European Regional Development Fund)
    Lifespan: 3 Jahre

Medizintechnik & Bildverarbeitung

  • Mini-Projector based Augmented Reality for medical applications
    For the purpose of optimizing the presentation of information, augmented reality approaches are the subject of current research. In the field of medical technology, the goal is the visualization of data directly in the surgeons field of view. This approach is based on a simultaneous representation of reality, in this case the patient, and additional visual information. Using a mini-projector and an optical navigation system, a handheld projection device was built up, enabling the projection of anatomical structures as well as navigation instructions in real time directly onto the surface of the patient.
    Team: M.Sc. Dipl.-Ing. (FH) Jan-Philipp Kobler
    Year: 2010
  • Integration of an OCT in a Medical Navigation System
    There is an increasing need of high accuracy of mechatronic assistance systems in the field of minimal invasive surgery. Since standard systems do not satisfy the accuracy requirements, we are developping in cooperation with the Institute of Measurement and Automatic Control and the department of otolaryngology of the Medical School Hanover a mechatronic assistance system which includes an optical coherence tomograph (OCT). High accurate positioning of a robot is possible with the information of this sensor on the basis of multimodal image registration of preoperative CT- and intraoperative OCT-data.
    Team: Dipl.-Math. Jesús Díaz Díaz
    Year: 2010
    Sponsors: German Research Foundation (DFG)
  • GentleCI
    The goal of this project is to design innovative, steerable electrodes in order to allow for a contactless and thereby riskless insertion into the spiral-wound cochlea. This aim is achieved by making use of shape memory micro-actuators, which take the desired shape dependent on the patient's body temperature. The project is carried out in cooperation with the department of otolaryngology of the Medical School Hannover (MHH).
    Team: M.Sc. Dipl.-Ing. (FH) Jan-Philipp Kobler
    Year: 2010
    Sponsors: BMBF
  • Development of a head-mounted surgical robot for skull surgery
    Precision skull surgery requires specialized instrumentation to satisfy demanding requirements in cochlear array implantation, deep brain stimulation electrode placement and related applications. A miniaturized reconfigurable parallel kinematic mechanism which can be directly mounted on a patient’s skull is being designed, built and tested in collaboration with the department of otolaryngology of the Medical School Hannover (MHH)
    Team: M.Sc. Dipl.-Ing. (FH) Jan-Philipp Kobler
    Year: 2011
    Sponsors: German Research Foundation (DFG)
  • Robot assisted laser osteotomy
    Laser osteotomy is of great interest for many clinical indications. Tissue removal following well defined geometries raises questions primarily in the fields of path planning, high precision beam control, human-machine-interface and determination of cutting depth. Therefore, a system consisting of a KUKA lightweight robot (LWR), a stereo camera, an optical coherence tomograph (OCT), and an Er:YAG laser is assembled at the Institute of Mechatronic Systems in close cooperation with the KUKA Laboratories GmbH to demonstrate a possible application for robot assisted laser osteotomy.
    Team: Dipl.-Ing. Alexander Fuchs
    Year: 2011
    Sponsors: KUKA Laboratories GmbH
  • Development of instruments for laparoscopic single-site surgery
    In laparoscopic surgery, the abdominal cavity of the patient is opened through a small incision. In the created access a laparoscope is inserted to illuminate and optically detect the internal organs and indicate it to the surgeon by an appropriate visual representation. In single-site surgery beside the laparoscope at least two other instruments for tissue manipulation are inserted through the same opening into the abdominal cavity. Where such access is located in the navel, the scar is barely visible later. However, besides the resulting good cosmetic result, the single-port laparoscopy has the advantages of a low blood loss and a short recovery time. To expand the applications for this new surgical technique medical systems are needed. This should in particular have a high mobility of the end-effector in a large collision-free workspace.
    Team: Dipl.-Ing. Jan-Hinnerk Borchard
    Year: 2011
  • µRALP - Micro-Technologies and Systesm for Robot-Assisted Laser Phonemicrosurgery
    The µRALP project is focused at advancing the state of the art in laser phonomicrosurgeries, which currently relies completely on the dexterity of surgeons who must operate through a microscope, control the laser aiming directly by hand, and deal with the associated poor ergonomics of the operating setup.
    Team: Dipl.-Ing. Dennis Kundrat, Dipl.-Ing. Andreas Schoob
    Year: 2012
    Sponsors: EU, FP7

[uncategorized]

  • Interface for the Integration of a Robot in an Image-guided therapy System
    Within this cooperative project with the KUKA Laboratories GmbH the Institute for Mechatronic Systems develops a generic interface concept for the integration of the Light Weight Robot (KUKA) in an image-guided therapy system. This leads to an easier Integration of the LWR into an image-guided therapy system. The interface concept is going to be tested and validated by integrating the KUKA LWR into the MediLAB environment in the medical technology laboratory of the institute.
    Team: M. Sc. Sebastian Tauscher
    Year: 2012
    Sponsors: KUKA Laboratories GmbH