Research
Publications

Publications


Showing entries 61 - 80 out of 638
First 1 2 3 4 5 6 7 Last

2020


Beilfuss, T., Kortmann, K. P., Wielitzka, M., Hansen, C., & Ortmaier, T. (2020). Real-Time Classification of Road Type and Condition in Passenger Vehicles. IFAC-PapersOnLine, 53(2), 14254-14260.

doi.org/10.1016/j.ifacol.2020.12.1161

Boyraz, P., Tappe, S., Ortmaier, T., & Raatz, A. (2020). Design of a low-cost tactile robotic sleeve for autonomous endoscopes and catheters. Measurement and Control (United Kingdom), 53(3-4), 613-626.

doi.org/10.1177/0020294019895303

,

doi.org/10.15488/10555

Budde, L., Hon, N. W. L., Kim, J., Witterick, I., Campisi, P., Chan, Y., Forte, V., Drake, J., & Looi, T. (2020). Development of a Steerable Miniature Instrument to Manage Internal Carotid Artery Injury in Endoscopic Transsphenoidal Surgery Simulation. IEEE Transactions on Medical Robotics and Bionics, 3(1), 281-284. [9276465].

doi.org/10.1109/tmrb.2020.3041897

Busch, A., Fink, D., Laves, M. H., Ziaukas, Z., Wielitzka, M., & Ortmaier, T. (2020). Classification of Road Surface and Weather-Related Condition Using Deep Convolutional Neural Networks. In M. Klomp, F. Bruzelius, J. Nielsen, & A. Hillemyr (Eds.), Advances in Dynamics of Vehicles on Roads and Tracks: Proceedings of the 26th Symposium of the International Association of Vehicle System Dynamics, IAVSD 2019, August 12-16, 2019, Gothenburg, Sweden (pp. 1042-1051). (Lecture Notes in Mechanical Engineering). Springer Nature.

doi.org/10.1007/978-3-030-38077-9_121

Ehlers, S. F. G., Stuede, M., Nülle, K., & Ortmaier, T. (2020). Map Management Approach for SLAM in Large-Scale Indoor and Outdoor Areas. In 2020 IEEE International Conference on Robotics and Automation, ICRA 2020 (pp. 9652-9658). [9196997]

doi.org/10.1109/icra40945.2020.9196997

Fast, J. F., Westermann, K. A., Laves, M-H. V., Jungheim, M., Ptok, M., Ortmaier, T., & Kahrs, L. A. (2020). Droplet applicator module for reproducible and controlled endoscopic laryngeal adductor reflex stimulation. BIOMICROFLUIDICS, 14(4), [044112].

doi.org/10.1063/5.0004351

Ferle, M. (2020). The soft-tissue restraints of the knee and its balancing capacity in total knee arthroplasty procedures. [Doctoral thesis, Gottfried Wilhelm Leibniz Universität Hannover]. Leibniz Universität Hannover.

doi.org/10.15488/9976

Fink, D., Busch, A., Wielitzka, M., & Ortmaier, T. (2020). Resource Efficient Classification of Road Conditions through CNN Pruning. In 21st IFAC World Congress (2 ed., Vol. 53, pp. 13958-13963). (IFAC-PapersOnLine)..

doi.org/10.1016/j.ifacol.2020.12.913

Frank, T., Zeipel, H., Wielitzka, M., Bosselmann, S., & Ortmaier, T. (2020). Real-Time Prediction of Curing Processes using Model Order Reduction. In 21st IFAC World Congress Berlin

Frank, T., Wielitzka, M., & Ortmaier, T. (2020). Reduced-Order Kalman Filter for Surface Temperature Monitoring of parameter-variant thermal Systems. In 2020 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 570-575). (IEEE International Conference on Mechatronics and Automation). Institute of Electrical and Electronics Engineers Inc..

doi.org/10.1109/ICMA49215.2020.9233772

Frank, T., Wielitzka, M., Dagen, M., & Ortmaier, T. (2020). Reduced-Order Modeling of Parameter Variations for Parameter Identification in Rubber Curing. In O. Gusikhin, K. Madani, & J. Zaytoon (Eds.), ICINCO 2020 - Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (pp. 659-666)

Hansen, C. (2020). Planung energieeffizienter Mehrachstrajektorien unter Ausnutzung elektrischer Antriebskopplung. [Doctoral thesis, Gottfried Wilhelm Leibniz Universität Hannover]. TEWISS Verlag.

Ihler, S., Laves, M-H., & Ortmaier, T. (2020). Patient-Specific Domain Adaptation for Fast Optical Flow Based on Teacher-Student Knowledge Transfer.

arxiv.org/abs/2007.04928

Ihler, S., Kuhnke, F. K., Laves, M-H. V., & Ortmaier, T. (2020). Self-Supervised Domain Adaptation for Patient-Specific, Real-Time Tissue Tracking. In A. L. Martel, P. Abolmaesumi, D. Stoyanov, D. Mateus, M. A. Zuluaga, S. K. Zhou, D. Racoceanu, & L. Joskowicz (Eds.), International Conference on Medical Image Computing and Computer Assisted Intervention (pp. 54-64). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12263 LNCS). Springer, Cham.

doi.org/10.1007/978-3-030-59716-0_6

Jahn, T., Ziaukas, Z., Kobler, J. P., Wielitzka, M., & Ortmaier, T. (2020). Neural Observer for Nonlinear State and Input Estimation in a Truck-Semitrailer Combination. In 21st IFAC World Congress

Kaczor, D., Bensch, M., Schappler, M., & Ortmaier, T. (2020). Trajectory optimization for the handling of elastically coupled objects via reinforcement learning and flatness-based control. In Annals of scientific society for assembly, handling and industrial robotics (pp. 319-329). Springer Verlag.

doi.org/10.1007/978-3-662-61755-7_29

Knöchelmann, E., Steinke, D., Greenyer, J., Spindeldreier, S., & Ortmaier, T. (2020). Trajectory Optimization Methods for Robotic Cells Considering Energy Efficiency and Collisions. In T. Schüppstuhl, K. Tracht, & D. Henrich (Eds.), Annals of Scientific Society for Assembly, Handling and Industrial Robotics (pp. 229–240). Springer Vieweg, Berlin, Heidelberg.

doi.org/10.1007/978-3-662-61755-7_21

,

doi.org/10.15488/10378

Kortmann, K. P., Zumsande, J., Wielitzka, M., & Ortmaier, T. (2020). Temporal Object Tracking in Large-Scale Production Facilities using Bayesian Estimation. IFAC-PapersOnLine, 53(2), 11125-11131.

doi.org/10.1016/j.ifacol.2020.12.271

Laves, M-H., Ihler, S., Kortmann, K-P., & Ortmaier, T. (2020). Calibration of Model Uncertainty for Dropout Variational Inference.

arxiv.org/abs/2006.11584

Laves, M-H., Tölle, M., & Ortmaier, T. (2020). Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior. In C. H. Sudre, H. Fehri, T. Arbel, C. F. Baumgartner, A. Dalca, R. Tanno, K. Van Leemput, W. M. Wells, A. Sotiras, B. Papiez, E. Ferrante, & S. Parisot (Eds.), Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (pp. 81-96). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12443 LNCS). Springer, Cham.

doi.org/10.1007/978-3-030-60365-6_9