RESEARCH PROJECTS

Identifikation & Regelung

  • Automated Control Design based on (partly) automatically generated, Control-otpimal Models
    Model-based control design enables objective, reproducible controller settings and, if required, online parameter adjustment. The controller is tuned according to simple calculation rules or by means of simulations without costly experiments. The difficulty, however, is to determine the appropriate model for a given system. When modeling, it is often not clear which physical effects must be taken into account in the model and thus in the model-based controller, or which effects can be neglected, e.g. elasticity, friction, dead time, slack. The decision on a suitable control concept (e.g. phase-lead network vs. notch filter, ...) also requires a lot of expert knowledge. In this project, (partially) automated models are to be selected and model-based controllers designed. Criteria such as maximum dynamics and minimization of the overshoot lead to different parameterizations. On the basis of these and other application-dependent criteria that can be specified by the user, an overall concept for the model and controller should be generated. As a result, a significantly reduced commissioning time can be expected with comparably good controller properties. The evaluation of the models for the model selection must be carried out based on control engineering criteria. This is in contrast to commonly used methods such as cross-validation and information criteria. Possible approaches arise from the area of ​​model predictive control.
    Leaders: Dr.-Ing. Mark Wielitzka
    Team: M. Sc. Mathias Tantau
    Year: 2021
    Sponsors: FVA
    Lifespan: 01.03.2021 bis 28.02.2022
  • Automated commissioning of electrical drive trains - Use of temporary commissioning sensors
    In order to gain detailed models for the automated design of feedback and feedforward control, prior knowledge can be combined with structure and parameter identification in various ways. It is currently already possible to identify models of electric drives by means of experiments and to use them for control design, Kalman filtering, online state and parameter estimation, etc. The problem remains that the uniqueness of the structure identification is not always given. As a possible solution, temporary commissioning sensors could be used, such as load-side position sensors, accelerometers, strain gauges, yaw rate sensors, and so on. However, little research has been done on how the position, type and quality of the temporary sensors contribute to solving the ambiguity problem and to improving the accuracy of the models. In addition, there are hardly any approaches for the systematic assessment of structure distinguishability. Research objectives: 1.) Higher quality and robustness of the techniques from previous projects due to temporary commissioning sensors 2.) Reduction of commissioning time by identification of the mechanical plant 3.) Commissioning box (low-cost hardware, or smartphone app) 4.) Broad field of application through automatic selection of the model structure 5.) Evaluation of the benefits of temporary commissioning sensors The temporary sensor can be reused after commissioning on other testbeds, or otherwise the expenses are affordable, as low-cost hardware is used. The methods developed are to be validated on various testbeds and integrated into the e-Workbench (FVA 827)
    Leaders: Prof. Dr.-Ing. Tobias Ortmaier
    Team: M. Sc. Mathias Tantau
    Year: 2020
    Sponsors: FVA
    Lifespan: 01.02.2020 - 28.02.2021
  • IdenT - Identifikation dynamik- und sicherheitsrelevanter Trailerzustände für automatisiert fahrende Lastkraftwagen
    Vor allem im Bereich der Nutzfahrzeuge ist das wirtschaftliche Potential von automatisiert fahrenden Lastkraftwagen besonders hoch. Damit dieses Vorhaben gelingen kann, muss der LKW-Anhänger (sog. Trailer) deutlich intelligenter werden, als er heute ist. Während das Zugfahrzeug serienmäßig mit viel Sensorik ausgestattet ist, gibt es im Trailer noch deutlichen Nachholbedarf. Im Rahmen dieses Projekts soll mit mehreren Projektpartnern aus Forschung und Industrie erarbeitet werden, wie durch Einsatz von zusätzlicher Sensorik im Trailer die fahrdynamischen und sicherheitsrelevanten Zustände berechnet bzw. geschätzt werden können, um diese anschließend an das Zugfahrzeug weiterzugeben. Ein weiterer Aspekt des Projekts ist die Beurteilung von verschleißbehafteten Komponenten im Trailer wie z.B. Reifen oder Bremsen, um eine Vorhersage zu treffen, wann die Komponenten ausgewechselt werden müssen. Dazu wird ein Online-Zwilling erstellt, der während der Fahrt auf einer Recheneinheit im Trailer fahrdynamische Zustände schätzt. Weiterhin sollen Informationen über die Fahrbahnbeschaffenheit gesammelt und mit Kameras der Rückraum überwacht werden. Die online gesammelten Informationen werden über eine Cloud-Infrastruktur an einen Offline-Zwilling gesendet, der dann mit Hilfe von detaillierten Fahrzeug-Modellen den Komponentenverschleiß berechnet und an den Online-Zwilling zurück sendet. Das Imes wird sich im Rahmen dieses Projekts hauptsächlich mit der Entwicklung des Online-Zwillings erfassen und setzt für die Online-Informationsgenerierung Methoden der fahrdynamischen Modellierung, des maschinellen Lernens und der Informationsfusion ein.
    Team: Simon Ehlers, Zygimantas Ziaukas
    Year: 2020
    Sponsors: Bundesministerium für Wirtschaft und Energie
    Lifespan: 3 Jahre
  • SyMoLearn - Physikalische Modellierung & Maschinelles Lernen: Symbiose zur Optimierung mechatronischer Systeme
    Modellbasierte Verfahren haben in den vergangenen Jahrzehnten innerhalb der Ingenieurswissenschaften und somit auch der Mechatronik zu einer weitreichenden Gütesteigerung dynamischerSysteme geführt. Die häufig verwendete pysikalische Modellbildung erhöht das Systemverständnis und ermöglicht damit eine Verbesserung der Beobachter- und Regelungsstrukturen. Die Genauigkeit der Modellierung ist dabei prinzipbedingt auf den Detailgrad der physikalischen Modelle beschränkt. Eine Genauigkeitssteigerung würde nur mit erhöhtem Detailgrad und somit höherem Rechenaufwand möglich sein. Einen alternativen Ansatz zur physikalischen Modellierung bieten Verfahren des Maschinellen Lernens. Diese Verfahren können gleichermaßen für die Modellierung, darüber hinaus aber auch direkt für Beobachtung und Regelung dynamischer Systeme eingesetzt werden. Dabei bieten sie das Potential den maximalen Informationsgehalt der erfügbaren Daten des jeweiligen Systems auszunutzen und somit eine Genauigkeitssteigerung zu erreichen. Demnach ermöglichen sie in diesen Bereichen eine sprunghafte Verbesserung der Güte. Maßgebliche Nachteile bestehen jedoch in dem Verlust der physikalischen Interpretierbarkeit der Modelle sowie der zumeist Notwendigkeit großer Mengen an Daten. Um die beschriebenen Vorteile zusammenzuführen und die Nachteile zu beseitigen, bietet sich eine Symbiose beider Verfahren an. Dabei wird eine hybride Verwendung ausgenutzt, um beispielsweise eine verbesserte Genauigkeit unter Beibehaltung der physikalischen Interpretierbarkeit zu ermöglichen. Der Anteil des jeweiligen Verfahrens ist variabel und abhängig von der betrachteten Zielgröße und Anwendung zu wählen. Das Ziel ist somit eine Optimierung mechatronischer Systeme durch die Hinzunahme von Verfahren des Maschinellen Lernens. Die erarbeiteten Verfahren werden an zwei verschiedenen Prüfständen entwickelt und analysiert. Dabei wird zum einen ein grundlegendes Systeme, anhand eines inversen Doppelpendels betrachtet. Zum anderen dient ein elektrisch angetriebenes Serienfahrzeug als anwendungsnaher Versuchsträger. Je nach Prüfstand werden unterschiedliche Zielgrößen adressiert und die entsprechende Kombination der Verfahren optimiert. Schließlich werden die Methoden auf die Echtzeitsysteme der Prüfstände übertragen. Abschließend werden die erarbeiteten Herangehensweisen mit bestehenden Verfahren verglichen und die verbesserte Güte aufgezeigt.
    Team: Zygimantas Ziaukas
    Year: 2020
    Sponsors: Leibniz Young Investigator Grant
    Lifespan: 2 Jahre
  • Condition Monitoring of nonlinear plants in the automation industry
    The progressive networking of industrial plants provides an increasing amount of data that is available in operation. It is usually no longer possible for humans to oversee this amount of information and to draw knowledge from it. With the development of increasingly powerful processors, machine learning methods have come into focus for this application. In this project, the existing procedures, which are mostly based on physical models, are to be complemented in order to enable comprehensive monitoring. The focus is on nonlinear systems that are difficult to describe using physical models.
    Team: Moritz Fehsenfeld
    Year: 2019
    Sponsors: Lenze Automation GmbH
    Lifespan: 10/2018 - 09/2022
  • RoCCl - Road Condition Cloud
    As part of the DFG-funded project RoCCl, a time-varying map, the Road Condition Cloud, is developed in cooperation with the Institute of Automotive Engineering of the TU Braunschweig. Therefore the road condition with additional confidence will be estimated by probability-based data fusion of various heterogeneous information from onboard and environmental sensors and transferred to the card. The communication with the RoCCl thus offers the possibility to correctly initialize driver assistance systems with regard to the current road condition at any time.
    Team: M. Sc. Alexander Busch
    Year: 2018
    Sponsors: Deutsche Forschungsgemeinschaft (DFG)
    Lifespan: 02/2018 - 01/2021
  • Online-Identification of control parameters in electric drives for parameter tracking II
    The main goal of the project is the identification of the main parameters for electric drives with elastically coupled mechanics without additional sensors. This is achieved firstly with dedicated identification trajectories and secondly during operation by observing the parameter identifiability with respect to the features of the trajectory. The basis is a mechatronic model of the overall mechatronic system.
    Leaders: Prof. Dr.-Ing. Tobias Ortmaier
    Team: M. Sc. Mathias Tantau
    Year: 2017
    Sponsors: FVA, AiF
    Lifespan: 01.07.2017 bis 31.01.2020
  • simTrailer - Complete, Model-based State Monitoring of Trailers
    In the simTrailer project, online-capeable methods for model-based state monitoring of trailers are being developed to ensure the most efficient use of sensor technology.
    Team: Zygimantas Ziaukas, M .Sc.
    Year: 2017
    Sponsors: BPW Bergische Achsen KG
  • Remote Mechatronics Challenge
    Remote Laboratories allow the control and observation of a real test bed via the Internet. Thus, lecture contents can be deepened and applied to real test beds. In addition to the permanent availability, the limitation of defined parameter of the system is a great advantage over classical laboratory concepts.
    Team: M.Sc. Johannes Zumsande
    Year: 2016
    Sponsors: Studienqualitätsmittel
  • Analysis of vehicle drive-train vibrations
    A current project is the analysis of vehicle drive-train vibrations in the powertrain of a passenger car. The aim of the research project is to analyse individual phenomena and identify their causes. This knowledge can be used in order to find suitable software or hardware measures that reduce or avoid this vibrations. This work is being carried out as part of an industrial project with IAV GmbH.
    Team: M. Sc. Eduard Popp
    Year: 2015
    Sponsors: IAV GmbH
  • iTracC - Intelligent Traction Control
    The goal of the iTracC project is to increase driving safety in vehicles with electrified powertrains by optimizing traction control based on adaptive powertrain and friction models.
    Team: M. Sc. Mark Wielitzka, M. Sc. Alexander Busch
    Year: 2015
    Sponsors: Bundesministerium für Wirtschaft und Energie (BMWi)
  • Automatisierte Inbetriebnahme und Condition Monitoring industriell eingesetzter Regalbediengeräte
    Das Ziel des Kooperationsprojekts ist die automatisierte Inbetriebnahme von Regalbediengeräten und modellbasiertem Condition Monitoring im laufenden Betrieb sowie Schwingungskompensation.
    Team: M.Sc. Daniel Beckmann
    Year: 2015
    Sponsors: ZIM-KOOP
    Lifespan: 2 Jahre
  • Development of a Miniaturized, Electromagnetically actuated Punch
    In this joint research project with the institute of metal forming and metal forming machines a small, efficient electromagnetically actuated punch for cutting thin metal sheets is developed. By exciting the mass-spring-system specifically at its resonance frequency a compact, efficient high speed punch machine is optained, saving space, energy and time.
    Team: Dipl.-Ing Markus Ahrens
    Year: 2014
    Sponsors: German Research Foundation (DFG)
  • Robust estimation of vehicle's side-slip angle, based on sensitivity-based parameteradaption and nonlinear observer structures
    A resent project at the Institute of Mechatronic Systems adresses the estimation of relevant parameters and states of lateral dynamic systems in vehicle dynamics. Therefore different modelbased observers, based on sensitivity-based parameteradaption are realised to ensure a robust Estimation.
    Team: M.Sc. Mark Wielitzka
    Year: 2014
  • Vehicle Vibration Analysis and Compensation
    A current project at imes is dealing with vehicle oscillations in automobiles. The research plan aims to find and analyze causes of vibration in the vehicle, in order to take appropriate measures – control strategies – to reduce or avoid vibrations
    Team: M.Sc Simon Eicke
    Year: 2011
    Sponsors: IAV GmbH
  • Electromagnetically actuated Punch
    The challenge of this research joint research project with the institute of metal forming and metal forming machines is the design and control of an electromangetically actuated punch. This drive concept allows the adaption of the cutting process and, therefore, gives the possibility to compensate oscillations and tracking errors during the cut. Thus, a higher stroke rate, better quality of the produced elements, and lower tool wear level of the die can be achieved. Up to now, rates up to 50 strokes per second and cutting forces up to 10 kN were reached. Thanks to the direct drive concept a very compact construction is possible.
    Team: Dipl.-Ing. Matthias Dagen, Ing. Mauro H. Riva
    Year: 2010
    Sponsors: German Research Foundation (DFG)
  • Time-Optimal Control of Electromechanical Actuators
    Several electromechanical actuators are used for a exhaust gas recirculation in diesel engined passenger vehicles. These actuators regulate the exhaust gas ratio with a high dynamical behavior. To account for the bounded power supply different model based control concepts are implemented within this research project
    Sponsors: IAV GmbH Gifhorn
    Lifespan: 11/2012-10/2013