Research Projects

Robotik & autonome Systeme

  • Soft Material Robotics – Methodologie zum Entwurf und der Entwicklung weicher Roboterstrukturen
    Roboter, die sich aufgrund ihrer hautähnlichen Nachgiebigkeit der Umwelt anpassen können, und aus silikonartigen Materialien gefertigt werden, bringen viele Vorteile, aber auch Herausforderungen mit sich. Es wird erforscht, wie sich ein methodisches Vorgehen beim Entwurf und der Entwicklung dieser Systeme umsetzen lässt. Dazu erfolgt die Modellierung der Dynamik auf Basis von Simulationen und die Realisierung von Versuchsständen zur Identifikation bzw. Validierung erzeugter Modelle. Aus letzteren lassen sich Leistungsmerkmale und modellbasierte Methoden extrahieren, welche zur spezifischen Entwicklung von Soft Material Robotern genutzt werden können.
    Team: Max Bartholdt, M.Sc
    Year: 2019
    Sponsors: DFG
    Lifespan: 2019 - 2022
  • Generation of Task Specific Robot Manipulators via Combined Structural and Dimensional Synthesis
    In order to propel the middle and small industries forward, a new method for the development of serial and parallel robots from a specific task is developed. The goal of the project is the automatic and global synthesis of robot structures from the design requirements.
    Team: M. Sc Moritz Schappler
    Year: 2018
    Sponsors: German Research Foundation (DFG)
    Lifespan: 01.01.2018 - 31.12.2019
  • Parallel-continuous manipulators - equalization of structure-specific disadvantages by combining parallel and continuum robots
    The project investigates the kinematical structure of parallel continuous robots that are parallel robots with continuous kinematic chains. The goal is to combine the high accuracy and stiffness of parallel robots with the high dexterity and manipulability of continuous robots.
    Team: Dipl.-Ing. Kathrin Nülle
    Year: 2018
    Sponsors: German Research Foundation (DFG)
    Lifespan: 1.1.2018-31.12.2019
  • Auto-tuning of PID controllers for robot manipulators
    Traditional PID controller is one of the most popular control structures in industrial processes. This is due to its simplicity and robustness. These advantages qualify PID controllers to be widely used in the field of robotics. Robot manipulators, however, are highly nonlinear, highly coupled, multi-input multi-output (MIMO) dynamic systems. Tuning the PID gains for such systems is considered to be a complicated task, which is usually done using traditional or manual methods, e.g. trials and errors.
    Team: M.Sc. Ahmed Zidan
    Year: 2017
  • Smart Control System for Increasing the Efficiency of Industrial DC Mircogrids
    The aim of this project is to develop intelligent control of the systems within a DC link circuit to reduce the energy absorbed by the production line. The next step is to extend the energy control system to energy storage and variable renewable energies. Emphasis is on the depth of simulation, the size of the influence of various factors, the energy storage control and the construction of an intelligent control, which actively intervenes in the process.
    Team: M. Sc. Elias Knöchelmann
    Year: 2017
    Sponsors: Bosch Rexroth AG.
  • roboterfabrik
    In order to establish Hanover as a leading venue for robotics, the project roboterfabrik was launched as a cooperation between Region Hannover, Leibniz Universität and Roberta Regiozentrum Hannover. The roboterfabrik pursues a continuous approach for the education of so-called Robotic Natives, spanning from school to university.
    Team: Dipl.-Ing. Daniel Kaczor
    Year: 2016
    Sponsors: Region Hannover
    Lifespan: 5 years
  • Energy efficient path planning for industrial robots
    This project focuses on improving the energy efficiency of industrial robots by optimising the path planning algorithms. Intelligent path planning approaches can increase the energy efficiency by avoiding unfavourable operating points or by utilising the eletrical as well as the mechanical couplings of the axes. In order to optimise the path, it is necessary to simulate the comprehensive drive system as well as the robot's mechanics. The energy-optimal path is determined using non-linear optimisation algorithms.
    Year: 2015
    Sponsors: Industry
  • "3rd Arm" - Craftsmen-Force-Assistence with adaptive Human-Machine Interaction
    Regarding an aging work force with higher requirements for work efficiency, a force assistence system is developed. The system is based on a mechatronic structure ("3rd arm"), which is fixed to the body of the user via a supporting construction. Apart from the physical support the system meets cognitive assistance functions. Thus, it provides force support on the one hand and on the other hand the increase in work efficiency and quality of work.
    Team: Dipl.-Ing. Kathrin Nülle
    Year: 2014
    Sponsors: German Federal Ministry of Education and Research (BMBF)
    Lifespan: 3 years
  • Automatic generation of optimized robotic structures for a desired task
    In order to propel the middle and small industries forward, a new method for the development of serial chain robots from a specific task is expected. The goal of the project is the automatic and global synthesis of robot structures from the design requirements.
    Team: M. Sc. Daniel Andrés Ramirez
    Year: 2013
    Sponsors: Administrative Department of Science, Technology, and Innovation of Colombia ("Colciencias")
  • Electromagnetic bending actuator for endoscopic applications
    The main objective of this project is aimed at the disadvantages of existing endoscopic systems which consider handling and risk of injury to the patient. The development of a new actuator, the modeling of kinematics and dynamics as well as the implementation of suitable control algorithms should compensate the aforementioned criteria. The work will be carried out in close cooperation with the Institute of Drive Systems and Power Electronics (IAL).
    Team: M. Sc. Svenja Spindeldreier (née Tappe)
    Year: 2013
    Sponsors: DFG and Caroline Herschel Program of the Equal Opportunities Office
    Lifespan: 2013-2019
  • Modularly structured motion control system for robotics and handling.
    In this project, an easy to use, modularly structured and thus flexible platform for the control of various robotic applications is being developed. In addition to established systems, such as SCARA, articulated or delta kinematics, different interfaces offer the ability to control custom-made kinematics. The aim is to simplify the programming and commissioning of complex, multi-axis manufacturing machines.
    Team: Dipl.-Ing. Julian Öltjen
    Year: 2012
    Sponsors: Lenze Automation GmbH
  • Design of Energy Efficient Mechatronic Systems based on Automated Controller Synthesis and Trajectory Planning
    Reducing the energy consumption is a major concern in industrial production systems. One approach is recuperating the braking energy of robot axes. We therefore propose an automated methodology that consists of three parts: A scenario-based language to flexibly specify the discrete production system behavior, an automated procedure to synthesize optimal control strategies from such specifications, including PLC code generation, and a procedure for the detailed trajectory optimization.
    Team: M. Sc. Elias Knöchelmann
    Sponsors: German Research Foundation (DFG)