
Autoencoder-based Representation Learning from Heterogeneous Multi-
variate Time Series Data of Mechatronic Systems
Karl-Philipp Kortmann, M. Sc.†‡, Moritz Fehsenfeld, M. Sc.† and Dr.-Ing. Mark Wielitzka†

† Leibniz University Hannover, Institute of Mechatronic Systems, An der Universität 1, 30823 Garbsen, Germany
‡ kortmann@imes.uni-hannover.de

Abstract
Sensor and control data of modern mechatronic systems are often available as heterogeneous time series with different sam-
pling rates and value ranges. Suitable classification and regression methods from the field of supervised machine learning
already exist for predictive tasks, for example in the context of condition monitoring, but their performance scales strongly
with the number of labeled training data. Their provision is often associated with high effort in the form of person-hours
or additional sensors. In this paper, we present a method for unsupervised feature extraction using autoencoder networks
that specifically addresses the heterogeneous nature of the database and reduces the amount of labeled training data required
compared to existing methods. Three public datasets of mechatronic systems from different application domains are used to
validate the results.

1 Introduction
Modern mechatronic systems contain a large number of in-
ternal sensor and control signals that can be accessed for
example via fieldbus interfaces. In addition, these systems
can be extended by external measuring systems, which in to-
tal leads to a heterogeneous set of multivariate time series
signals (MTS), where heterogeneous here implies divergent
sampling times, measuring resolutions or scale levels of the
individual univariate signals.
In the course of progressive digitization, such system signals
are increasingly used for classification tasks (such as alarm
or condition monitoring) or for the regression of target vari-
ables that cannot be measured directly (e.g. process stability
or quality). In the following, these are collectively referred to
as estimation tasks.
The estimation methods primarily used for this purpose from
the field of statistical or machine learning depend on exten-
sive feature extraction [1], especially in the case of a high-
dimensional, heterogeneous data basis. In the case of man-
ual feature extraction, this requires a high level of technical
expertise regarding the system at hand and is consequently
accompanied by a high effort during implementation. Alter-
natively, supervised end-to-end estimation methods from the
field of deep learning explicitly manage without previously
extracted features, but require a large amount of already la-
beled data for training [2].
Methods of representation learning have recently emerged
in the field of computer vision and speech recognition, en-
abling unsupervised feature extraction that outperforms the
prediction performance of common manual and automated
feature extraction methods in the case of only a small amount
of existing labeled data [3]. The application to mechatronic
systems has so far been limited to specialized single solu-
tions [4], which cannot be directly transferred to any arbitrary

mechanical or electrical system.

2 State of Research
2.1 Representation Learning
The term representation learning or feature learning covers
methods that allow an automatic extraction of relevant fea-
tures and thus make the step of manual feature engineering
superfluous in principle. In the context of this work, the focus
is on an unsupervised method that learns a compact represen-
tation of the MTS without knowledge of the target variable
and thus only on the basis of the input time series. Originally
derived from the field of computer vision, feature learning
methods are increasingly adapted for estimation tasks based
on time series data such as Chen et al. [4] using an autoen-
coder for feature extraction from the torque signals of a 6-axis
industrial robot to predict collisions in the workspace. Li et
al. [5] and Jiang et al. [6] both use a Generative Adverssarial
Network (GAN) for feature extraction from industrial time
series data, while Franceschi et al. [3] use a pure encoder-
based network in combination with a so-called triplet loss
function for classification on various reference time series. In
this work, we focus on an autoencoder-based approach be-
cause, in contrast to GANs for instance, these generally pro-
vide a better representation of the population of training data,
often at the cost of worse performance than purely generative
models [7] (i.e., in generating realistic new time series), but
this is not the focus of this paper.

Autoencoder An autoencoder is an artificial neural net-
work whose primary goal is to reconstruct an input signal
x (see Figure 1). The dimension-reduced latent variable (also
bottelneck or latent space)

z = φ (x;θ En) (1)

ar
X

iv
:2

10
4.

02
78

4v
2

 [
cs

.L
G

]
 8

 A
pr

 2
02

1

is the result of an encoder function with the parameters
(weights) θ En and is used as a feature vector in the represen-
tation learning in this work. The latent variable subsequently
passes through a decoder

x̃ = ψ (z;θ De) (2)

with parameters θ De, which generates a reconstruction x̃ of
the input signal. In the present case of mostly real-valued

loss function:

In
pu

t

re
co

ns
tr

uc
ti

on

encoder decoderbottleneck

Figure 1 Schematic network diagram of a simple autoencoder
with one-dimensional input and implied fully connected layers in

encoder and decoder

input values, usually the mean squared error Lr = MSE(x, x̃)
is used as reconstruction error and serves as a loss function
during optimization.
Besides fully connected or dense layers with nonlinear ac-
tivation functions, more complex neural layers also find use.
For example, Bianchi et al. use recurrent (RNN) bidirectional
layers in combination with an additional kernel loss function
for feature extraction from MTS with missing values [8].

Variational Autoencoder An extension of the regular au-
toencoder is the Variational Autoencoder (VAE), which is
mostly used as generative model in the field of computer vi-
sion. As an example of a Variational Bayes model, the VAE
models the unknown distribution function of the input data
x∼ p∗(x) using a model distribution pθ (x)≈ p∗(x) [9]. The
stochastic decoder can therefore be understood as a condi-
tional probability distribution pθDe(x|z), which together with
the prior distribution of the latent variable pθ (z) forms a gen-
erative model by factorizing the multivariate distribution

pθ (x,z) = pθ (z)pθDe(x|z). (3)

Similarly, the encoder represents an inference model that can
be conceived as a conditional probability distribution of the
latent variables given input data qθEn(z|x). This approach
leads by the application of the evidence lower bound, ELBO

to the modified loss function [9]

LθEn,θDe(x) = DKL(qθEn(z|x)‖pθ (z))
−EqθEn (z|x)

(
log pθDe(x|z)

)
, (4)

with the Kullback-Leibler divergence DKL, which penalizes
the deviation between a given prior distribution of the la-
tent variable z and its actual (empirical) distribution given
by the encoder. The second term represents the reconstruc-
tion error. The standard multivariate normal distribution
pθ (z) ∼ N (0, I) is mostly used as prior for the latent vari-
able. For the training using the standard stochastic gradi-
ent descent (stochastic gradient descent, SGD) method, the
gradient of the loss function ∇LθEn ,θDe(xmb) is calculated
for each mini-batch of training data xmb in order to perform
minimization of the loss function as a function of the net-
work parameters θEn and θDe (backpropagation). As can be
seen in Figure 2a, this is not possible when directly drawing
z∼ qθEn(z|x), since the backpropagation is interrupted by the
random variable z [11]. Only with a mathematically equiva-
lent reparametrization by swapping out the random variation
into the random variable ε (which is typically modeled as nor-
mally distributed), a backpropagation of the error through the
encoder is possible (so-called reparameterization trick, see
Figure 2b).

R
ek
on
st
ru
kt
io
n

(a)

R
ek
on
st
ru
kt
io
n

(b)

Figure 2 (a): Direct sampling of z makes backpropagation (99K)
of the loss function impossible. (b): Only with the

reparametrization of z the optimization of the encoder parameters
becomes possible. Independent random variables are shaded gray.

Based on [10].

3 Methodology
This section presents the suggested autoencoder-based
model, as well as the embedding pipeline. This is followed
by details on the experimental design, in particular the cho-
sen comparison methods and the selected publicly available
datasets.

3.1 Feature Extraction
Unsupervised feature extraction from MTS with the amount
of univariate signals nsig is performed using multiple VAEs
trained separately for each univariate time series. This, in
contrast to common two-dimensional convolutional network

architectures (convolutional neural networks, CNN), allows
a parallelization of the training and an individual architecture
of the networks, depending on the sampling rate of the het-
erogeneous signals1.
As an aggregated feature, the 1D concatenation of the indi-
vidual latent variables xi, i ∈ {1, ...,nsig} is used as input of
the estimator. Table 1 lists the most important (hyper) param-
eters of the trained model. These were kept constant across
all datasets in order to provide the best possible demonstra-
tion of generality.

Instead of specifying a constant dimension of the latent

Table 1 Summary of the most important (hyper-)parameters of
the univariate VAE model.

(Hyper-)parameter Value Remark
Input dimension 1×∗ ∗: Maximum window length
Compression ratio κ 25 Quotient of ∗ and dim(z)
Hidden layer [∗/2, ∗/2] Two hidden layers
Activation radio - tanh resp. lin. for output layer
Regularization - Early stopping and L2 norm
Optimizer Adam SGD optimizer [12]
Batch-size 64−512 ∼ ntrain
Normalization - Instance or layer norm.
Learning rate 1×10−4 No learning rate scheduler
Max. epochs 1×103 Note: early stopping

space, a constant compression rate κ is chosen so that the
number of extracted features scales proportional to the sam-
pling rate and signal duration. Furthermore, during training
and inference, instance normalization is performed for each
windowed input time series to account for divergent ranges of
signal values and stabilize convergence during the training.

3.2 Pipeline
The sequence of modeling/training and inference steps is typ-
ical for a so-called semi-supervised training procedure, con-
sisting of unsupervised representation learning and super-
vised training of an estimator. (see Figure 3): After con-
secutive training of both models, they are applied unchanged
during inference (in this case on independent test datasets).
The amount of labeled training data is varied during the test-
ing procedure (logarithmic scaling of quantity).
The feature learning method (VAE) is provided with all avail-
able training data without labels beforehand in order to learn
representations. This corresponds to the realistic use case of
having a large amount of raw data, but only a certain fraction
of it has been labeled. For each dataset, method, and quantity
of labeled training data, nrepeat = 10 replicates are performed
so that empirical mean standard deviation of the particular
performance metric can be calculated. The train/test split of
the datasets was provided by the authors of the same.
Python 3.82 on a computer with GPU support (CUDA 7.5)
is used as experimental environment. The source code and

1On the other hand, existing cross-correlations between the individual
univariate time series are no longer directly observable.

2In particular: torch 1.7.1, sktime 0.4.3 and sklearn 0.24.1.

Windowing

Vorverarbeitung,
Standardisierung

unsupervised
representation learning

supervised training
of an estimator

test of the estimator

label / target data

te
st

tr
ai

ni
ng

, v
al

id
at

io
n

Windowing

Vorverarbeitung,
Standardisierung

feature extraction

estimation (prediction)

usage (e.g. monitoring,
control, fault detection...)

estimation
model

feature
model

m
od
el
in
g inference

windowing

pre-processing,
standardization

multivariate time series data multivariate
time series stream

Figure 3 Flowchart of the semi-supervised ML pipeline. The
consecutive estimation task is highlighted in gray.

links to the used datasets are made publicly available3.

3.3 Comparison methods
The presented representation learning model (VAE) as well
as the semi-supervised pipeline are compared with a feature
extraction method from the current state of the art (Rocket).
Additionally, principal component analysis serves as a de-
terministic baseline comparison method. The Python library
tsfresh allows automatic extraction and selection of statistical
time and frequency domain features, thus providing a com-
parison method from the field of manual feature extraction.
For all comparison methods, a ridge regression-based esti-
mator is used in that parameterization, as it is recommended
as a favored predictor, especially by authors of several cur-
rent feature extractors [13,14]. In case of the VAE, a support
vector machine (SVM) with Gaussian kernel is used to bet-
ter account for the forced normal distribution character of the
latent variable4.

PCA Using principal component analysis (PCA), time se-
ries data can be reduced in dimension by the help of singular
value decomposition. PCA produces those orthogonal linear
transformations of the input data which maximize the vari-
ance of the components of the target subspace in descending
order. The obtained transformation can be used as a feature
for classification or regression. In particular, PCA can be
considered as a special case of a linear autoencoder without
any hidden layers [9], which is why it will serve as a compar-
ative baseline method here.

3https://github.com/MrPr3ntice/vae_rep_learn_mts
4In particular, due to the symmetric kernel, closed intervals on one vari-

able can be separated in case of classification.

https://github.com/MrPr3ntice/vae_rep_learn_mts

Table 2 Overview of selected data sets; nmax indicates the maximum number of data points in a time series sample (windowed).

Dataset Train
samples

Test
samples

Number of
channels

Duration per
sample (nmax)

Target value (type) Reference

Rolling bearing damages 1440 800 7 0.2s(800) Rolling bearing condition (3 classes) [18]
Stepper motors 70152 23384 7 6ms(60) Operating condition (4 classes) [19]
Hydraulic system 1544 661 17 60s(1200) Cooler condition (3 classes), Hy-

draulic accumulator pressure (regr.)
[20]

Statistical Features The extraction of manually or auto-
matically selected statistical features from time series for ML
applications is widely used. The Python library tsfresh pro-
vides a collection of established extraction methods to auto-
matically generate and select a variety of these features from
time series data. The collection of features includes, for ex-
ample, statistical ratios and correlations in both time and fre-
quency domain. A complete overview of the extracted fea-
tures can be taken from the libraries documentation [15]. In
the present case, the default settings5 is used.

Rocket Random convolutional kernel transform is a state-
of-the-art method that uses randomly sampled convolution
kernels to extract features from time series. Subsequently, a
Ridge regression6 is trained with the thereby generated fea-
tures and the known target values. Due to this straightfor-
ward setup, the computational cost of Rocket is lower than
that of comparably performing methods [14]. To the state of
this work, the method produces the best average classifica-
tion results on the datasets of the UCR and UEA time series
archive [17].

3.4 Data sets
The number of publicly available data sets is limited, espe-
cially in the area of mechanical and electronic systems. For
validation of the proposed method, data sets covering a wide
range of mechatronic applications are selected from those
available. All data sets consist of real measurement data from
several sensors, which differ e.g. in sampling rates. This re-
sults in three multivariate data sets from heterogeneous time
series, from which three classification tasks and one regres-
sion task are derived. An overview of the selected data sets
can be found in Table 2.

Rolling bearing damages A widespread use case for ma-
chine learning applications is the detection of different rolling
bearing damages. A comprehensive reference data set repre-
senting this use case has been published recently by Leiss-
meier et al. [18]. In addition to high-frequency sampled
measurements of motor currents and housing vibration (fs =
64kHz), additional, lower-frequency data such as radial force
(fs = 4kHz) and temperature (fs = 1Hz) are available for

5extraction: efficient, selection: extract_relevant_feat ures()
6A special case of Tikhonov regularization for linear regression, some-

times also referred to as L2-regularization [16]. It can be used in both clas-
sification and regression case.

damage classification. The dataset includes different damage
types of rolling bearings on the outer and inner ring as well as
the data from undamaged bearings under different operating
conditions. Further information on the data set can be found
in [18].

Stepper motors For stepper motor monitoring, there is a
dataset published by Goubeaud et al. [19]. This includes
measurements of current, voltage, and vibration (transla-
tional acceleration). The target variable is the operating mode
of the stepper motor, which differentiates between clockwise
and counterclockwise operation, as well as operation in the
normal range and beyond the mechanical stop. A detailed de-
scription of the experimental setup and the data acquisition is
given in the original publication [19].

Hydraulic system The hydraulic system described by Hel-
wig et al. [20] is equipped with a variety of different sensors.
In addition to measurements of pressure and flow rates also
temperature, current, and vibration are recorded.The sam-
pling rates range from fs = 1Hz (temperature) to fs = 20Hz7

(pressure), resulting in a heterogeneous data set with a wide
variety of sensor types, value range and sampling rate. In this
work, the state of the cooler (fault classification) and the pres-
sure in the hydraulic accumulator (regression) will be consid-
ered as target variables.

4 Results
The results are shown in Figure 4 (a) - (d). More detailed re-
sults can be retrieved from the Tables 3 and 4 in the appendix.
For the first three cases, the Rocket comparison method
achieves the highest test results with respect to the mean ac-
curacy. Only in the case of the pressure estimation in the
hydraulic accumulator, VAE shows almost consistently the
lowest RMSE. In this regard, it should be noted that Rocket
was originally developed for classification tasks and has been
applied for this task in majority. Principal component anal-
ysis and the statistical features determined by tsfresh are not
competitive for the prediction tasks on the first two data sets;
for classification on the hydraulic data, all methods achieve
similarly low error rates for a higher fraction of labeled train-
ing data.
A direct comparison with the partly available results of the

7Compared to the original data set sampled at 100Hz, pressure has been
sampled down to 20Hz in favor of the computation time.

% of labeled training data (n)

(a) Rolling bearing damages
% of labeled training data (n)

(b) Stepper motors

% of labeled training data (n)

(c) Hydraulic system (classification)
% of labeled training data (n)

(d) Hydraulic system (regression)

Figure 4 Results of the four compared feature extractors on the three test datasets for varying proportions of labeled training data (log.
scaling).The plots (a) - (c) show the accuracy for the respective classification tasks; (d) shows the normalized RMSE (log. scaling) for the

regression task. For each proportion the empirical mean and standard deviation for nrepeat = 10 of the respective metric is shown.

original publications of the data sets is not possible at this
point, since the multivariate case of a training data with a
varying number of labeled data, which is treated here, was
not considered in most studies. Additionally a neutral se-
lection and parameterization of the compared estimators has
been used in this work, in order to ensure the best possible
comparability between the methods and not the highest pos-
sible performance of the same.
Looking at the results for a small number of labeled training
data, it can be seen for all data sets that the presented imple-
mentation of VAE forms a better predictive measure based
on the extracted features in the range up to at least 2%. This
supports the research hypothesis that autoencoder-based rep-
resentation learning methods for extracting features from het-
erogeneous multivariate time series are particularly suitable
for very small amounts of existing labeled training data in the
presence of a sufficiently large amount of unlabeled training
data at the same time.

5 Conclusion
In this work, an unsupervised autoencoder-based feature ex-
tractor for estimation tasks on heterogeneous, multivariate
time series of mechatronic data was presented and validated
on three data sets from the scientific community. Even
though the prediction quality based on the entire training data

does not approach current state-of-the-art feature extractors
like Rocket, an increased quality for the case of a low amount
of labeled training data with a high availability of unlabeled
data could be shown.
The presented results were obtained using only processed
(reference) data sets. Thus, a consequential step towards au-
tomated estimation methods for the condition monitoring in
comparable applications is the adaptation of the presented
method for non-preprocessed raw data. Here, for example,
the method of the denoising autoencoder may be considered
as a possible extension for noisy or even corrupted input data.

Publication notice This is a pre-print version of the paper
in German language submitted to VDI Mechatronic Tagung
2021, which has been published in the conference proceed-
ings.

References
[1] Fawaz, H. I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller,

P. A.: Deep learning for time series classification: a re-
view. Data Mining and Knowledge Discovery. (2019), 33(4),
pp. 917–963.

[2] Lei, Y.; Jia, F.; Lin, J.; Xing, S.; Ding, S. X.: An intelligent
fault diagnosis method using unsupervised feature learning
towards mechanical big data. IEEE Transactions on Industrial

Electronics. (2016), 63(5), pp. 3137–3147.
[3] Franceschi, J.-Y.; Dieuleveut, A.; Jaggi, M.: Unsupervised

Scalable Representation Learning for Multivariate Time Se-
ries. Advances in Neural Information Processing Systems.
(2019) 32, ISSN 1049-5258.

[4] Chen, T.; Liu, X.; Xia, B.; Wang, W.; Lai, Y.: Unsuper-
vised Anomaly Detection of Industrial Robots Using Sliding-
Window Convolutional Variational Autoencoder. IEEE Ac-
cess. (2020) 8, ISSN 2169-3536, pp. 47072–47081.

[5] Li, D.; Chen, D.; Jin, B.; Shi, L.; Goh, J.; Ng, S. K.:
MAD-GAN: Multivariate anomaly detection for time series
data with generative adversarial networks. In: International
Conference on Artificial Neural Networks. (2019), Springer,
Cham, pp. 703–716.

[6] Jiang, W.; Cheng, C.; Zhou, B.; Ma, G.; Yuan, Y.: A novel
GAN-based fault diagnosis approach for imbalanced indus-
trial time series. (2019), arXiv preprint arXiv:1904.00575.

[7] Grover, A.; Dhar, M.; Ermon, S.: Flow-GAN: Combining
maximum likelihood and adversarial learning in generative
models. In: Proceedings of the AAAI Conference on Artificial
Intelligence. (2018) 32, 1.

[8] Bianchi, F. M.; Livi L.; Mikalsen, K. Ø.; Kampffmeyer M.;
Jenssen, R.: Learning representations of multivariate time se-
ries with missing data. Pattern Recognition. (2019) 96, ISSN
0031-3203.

[9] Kingma, D. P.; Welling, M.: An Introduction to Variational
Autoencoders . Foundations and Trends in Machine Learning.
(2019) 12, No. 4, pp. 307–392.

[10] Kingma, D. P.; Welling, M.: Auto-encoding Variational
Bayes. (2013), arXiv preprint arXiv:1312.6114.

[11] Rezende, D. J.; Mohamed, S., Wierstra, D.: Stochastic back-
propagation and approximate inference in deep generative
models. In: International Conference on Machine Learning.
(2014), pp. 1278—1286.

[12] Kingma, D. P.; Ba, J.: Adam: A method for stochastic opti-
mization. (2014), arXiv preprint arXiv:1412.6980.

[13] Le Nguyen, T.; Gsponer, S.; Ilie, I.; O’Reilly, M.; Ifrim,
G.: Interpretable time series classification using linear mod-
els and multi-resolution multi-domain symbolic representa-
tions. Data Mining and Knowledge Discovery. (2019) 33,
ISSN 1573-756X, pp. 1183–1222.

[14] Dempster, A.; Petitjean, F.; Webb, G. I.: ROCKET: exception-
ally fast and accurate time series classification using random
convolutional kernels. Data Mining and Knowledge Discov-
ery. (2020) 34, ISSN 1573-756X, pp. 1454–1495.

[15] Christ, M.; Braun, N.; Neuffer, J.; Kempa-Liehr A.W.: Time
Series FeatuRe Extraction on basis of Scalable Hypothesis
tests (tsfresh – A Python package). Neurocomputing. (2018)
307, ISSN 1573-756X, S. 72–77.

[16] Kennedy, P.: A Guide to Econometrics. 5th edition.
Cambridge: The MIT Press. (2003). ISBN: 0-262-61183-X,
pp. 205–206.

[17] Ruiz, A. P.; Flynn, M.; Large, J.; Middlehurst, M.; Bagnall,
A.: The great multivariate time series classification bake off:
a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery. (2020),
Springer OA, ISSN: 1573-756X, pp. 1–49.

[18] Lessmeier, C.; Kimotho, J.; Zimmer,D.; Sextro, W.: Con-
dition Monitoring of Bearing Damage in Electromechanical
Drive Systems by Using Motor Current Signals of Electric
Motors. European Conference of the Prognostics and Health
Management Society. (2016).

[19] Goubeaud, M.; Grunert, T.; Lützenkirchen, J.; Joußen, P.;
Ghorban, F.; Kummert, A.: Introducing a New Benchmarked
Dataset for Mechanical Stop Detection of Stepper Motors.
2020 27th IEEE International Conference on Electronics, Cir-
cuits and Systems (ICECS). (2020), pp. 1–4.

[20] Helwig, N.; Pignanelli, E.; Schütze, A.: Condition monitor-
ing of a complex hydraulic system using multivariate statis-
tics. 2015 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC) Proceedings. (2015)
24, ISSN, pp. 210–215.

Appendix

Table 3 Test results of the classification tasks with all three data sets. The mean and standard deviation of the accuracy for different
proportions of labeled training data are given in each case.

% of labeled training samples (ntrain) VAE + SVM PCA + Ridge tsfresh + Ridge Rocket + Ridge
Rolling bearing damages data set

1.0% (14) .541± .023 .424± .015 .484± .026 .424± .009
2.0% (28) .545± .021 .383± .029 .496± .027 .426± .008
5.0% (72) .618± .023 .529± .029 .536± .027 .636± .032

10.0% (144) .724± .026 .443± .028 .477± .020 .817± .020
20.0% (288) .735± .012 .372± .020 .490± .017 .862± .019
50.0% (720) .781± .015 .438± .017 .417± .001 .827± .016

100.0% (1440) .768± .014 .512± .000 .443± .000 .895± .006
Stepper motors data set

0.1% (70) .677± .013 .454± .016 .578± .013 .510± .014
0.2% (140) .730± .025 .479± .014 .607± .012 .616± .016
0.5% (350) .765± .010 .474± .015 .594± .010 .700± .033
1.0% (701) .790± .015 .499± .017 .658± .017 .741± .036
2.0% (1403) .808± .017 .502± .023 .663± .012 .774± .032
5.0% (3507) .820± .014 .512± .015 .677± .011 .821± .011

10.0% (7015) .825± .013 .512± .012 .672± .013 .866± .012
20.0% (14030) .826± .011 .515± .010 .679± .010 .883± .013
50.0% (35076) .823± .011 .517± .012 .681± .011 .902± .013

100.0% (70152) .809± .010 .516± .010 .680± .010 .906± .012
Hydraulic system dataset

1.0% (15) .972± .006 .906± .018 .886± .021 .924± .012
2.0% (30) .974± .003 .905± .025 .948± .007 .947± .011
5.0% (77) .986± .001 .980± .004 .980± .007 .992± .001

10.0% (154) .984± .001 .994± .001 .990± .001 .996± .000
20.0% (308) .991± .002 .994± .001 .992± .001 .997± .001
50.0% (772) .995± .000 .996± .001 .996± .001 .997± .001

100.0% (1544) .997± .000 .997± .000 .994± .000 .998± .000

Table 4 Test results for the regression task with the hydraulic system data set. The mean value and standard deviation of the normalized
RMSE for the prediction of the pressure in the hydraulic accumulator for different proportions of labeled training data are given in each

case.

% of labeled training samples (ntrain) VAE + SVR PCA + Ridge tsfresh + Ridge Rocket + Ridge
1.0% (15) .814± .058 1.674± .350 1.026± .013 .923± .033
2.0% (30) .669± .018 .885± .107 1.002± .019 .856± .037
5.0% (77) .565± .033 .595± .123 3.429± .350 .633± .022

10.0% (154) .433± .009 .405± .091 1.986± .350 .541± .085
20.0% (308) .321± .014 .458± .129 2.138± .350 .367± .023
50.0% (772) .217± .004 .237± .009 .915± .266 .864± .350

100.0% (1544) .169± .001 .224± .000 1.217± .000 .212± .008

	1 Introduction
	2 State of Research
	2.1 Representation Learning

	3 Methodology
	3.1 Feature Extraction
	3.2 Pipeline
	3.3 Comparison methods
	3.4 Data sets

	4 Results
	5 Conclusion

