Data-Based Energy Demand Prediction for Hybrid Electrical Vehicles

verfasst von
Daniel Fink, Oliver Maas, Daniel Herda, Zygimantas Ziaukas, Christoph Schweers, Ahmed Trabelsi, Hans Georg Jacob
Abstract

To achieve a resource-efficient automotive traffic, modern driver assistance systems minimize the vehicle’s energy demand through speed optimization algorithms. Based on predictive route data, the required energy for upcoming operation points has to be determined. This paper presents a method to predict the energy demand of a hybrid electrical vehicle. Within this method, data-based approaches, such as neural networks, Gaussian processes, and look-up tables, are applied and assessed regarding their ability to predict the behavior of separate powertrain parts. The applied approaches are trained using measured data of a test vehicle. As a result, for every separate powertrain part, the best-suited data-based approach is selected to obtain an optimal energy demand prediction method. On a validation data set, this method is able to predict the transmission ratio of the gearbox causing a rmse of 0.426. The combustion engine’s torque prediction results in an rmse of 19.01 Nm and the electric motor torque prediction to 19.11 Nm. The root mean square error of the motor voltage results to 1.211 V.

Organisationseinheit(en)
Institut für Mechatronische Systeme
Externe Organisation(en)
IAV GmbH
Typ
Artikel
Journal
SN Computer Science
Band
5
Anzahl der Seiten
7
ISSN
2662-995X
Publikationsdatum
11.01.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Informatik (insg.), Angewandte Informatik, Computernetzwerke und -kommunikation, Computergrafik und computergestütztes Design, Theoretische Informatik und Mathematik, Artificial intelligence
Elektronische Version(en)
https://doi.org/10.1007/s42979-023-02475-9 (Zugang: Offen)