Projects

Robotik & autonome Systeme

  • Design of Energy Efficient Mechatronic Systems based on Automated Controller Synthesis and Trajectory Planning
    Reducing the energy consumption is a major concern in industrial production systems. One approach is recuperating the braking energy of robot axes. We therefore propose an automated methodology that consists of three parts: A scenario-based language to flexibly specify the discrete production system behavior, an automated procedure to synthesize optimal control strategies from such specifications, including PLC code generation, and a procedure for the detailed trajectory optimization.
    Team: M. Sc. Elias Knöchelmann
    Year: 2013
    Sponsors: German Research Foundation (DFG)
  • Electromagnetic bending actuator for endoscopic applications
    The main objective of this project is aimed at the disadvantages of existing endoscopic systems which consider handling and risk of injury to the patient. The development of a new actuator, the modeling of kinematics and dynamics as well as the implementation of suitable control algorithms should compensate the aforementioned criteria. The work will be carried out in close cooperation with the Institute of Drive Systems and Power Electronics (IAL).
    Team: M. Sc. Svenja Spindeldreier (née Tappe)
    Year: 2013
    Sponsors: DFG and Caroline Herschel Program of the Equal Opportunities Office
    Lifespan: 2013-2019
  • "3rd Arm" - Craftsmen-Force-Assistence with adaptive Human-Machine Interaction
    Regarding an aging work force with higher requirements for work efficiency, a force assistence system is developed. The system is based on a mechatronic structure ("3rd arm"), which is fixed to the body of the user via a supporting construction. Apart from the physical support the system meets cognitive assistance functions. Thus, it provides force support on the one hand and on the other hand the increase in work efficiency and quality of work.
    Team: Dipl.-Ing. Kathrin Nülle
    Year: 2014
    Sponsors: German Federal Ministry of Education and Research (BMBF)
    Lifespan: 3 years
  • roboterfabrik
    In order to establish Hanover as a leading venue for robotics, the project roboterfabrik was launched as a cooperation between Region Hannover, Leibniz Universität and Roberta Regiozentrum Hannover. The roboterfabrik pursues a continuous approach for the education of so-called Robotic Natives, spanning from school to university.
    Team: Dipl.-Ing. Vincent Modes
    Year: 2016
    Sponsors: Region Hannover
    Lifespan: 5 years
  • Haley - Hydraulic snake-like robot for endoscopy
    Endoscopic procedures for diagnostics and therapy are changing medicine sustainably. Two important factors must be fulfilled for a successful intervention: Good maneuverability is necessary to reach areas that are difficult to access. In addition, the intervention in the target area requires high structural stiffness in order to withstand manipulation forces and provide the doctor with a stable working platform. However, today's endoscopes cannot fulfill both requirements at the same time. Either purely rigid or purely flexible endoscopes are used, and stiffenable mechanisms are extremely rare - even in research. As a bridge between flexible and rigid robots, a hydraulically actuated, snake-like endoscope will be investigated in the HALEy project.
    Team: M. Sc. Tim-Lukas Habich
    Year: 2020
    Sponsors: Deutsche Forschungsgemeinschaft (DFG)
    Lifespan: 01.10.2020 - 30.04.2023

Identifikation & Regelung

  • SyMoLearn - Physikalische Modellierung & Maschinelles Lernen: Symbiose zur Optimierung mechatronischer Systeme
    Modellbasierte Verfahren haben in den vergangenen Jahrzehnten innerhalb der Ingenieurswissenschaften und somit auch der Mechatronik zu einer weitreichenden Gütesteigerung dynamischerSysteme geführt. Die häufig verwendete pysikalische Modellbildung erhöht das Systemverständnis und ermöglicht damit eine Verbesserung der Beobachter- und Regelungsstrukturen. Die Genauigkeit der Modellierung ist dabei prinzipbedingt auf den Detailgrad der physikalischen Modelle beschränkt. Eine Genauigkeitssteigerung würde nur mit erhöhtem Detailgrad und somit höherem Rechenaufwand möglich sein. Einen alternativen Ansatz zur physikalischen Modellierung bieten Verfahren des Maschinellen Lernens. Diese Verfahren können gleichermaßen für die Modellierung, darüber hinaus aber auch direkt für Beobachtung und Regelung dynamischer Systeme eingesetzt werden. Dabei bieten sie das Potential den maximalen Informationsgehalt der erfügbaren Daten des jeweiligen Systems auszunutzen und somit eine Genauigkeitssteigerung zu erreichen. Demnach ermöglichen sie in diesen Bereichen eine sprunghafte Verbesserung der Güte. Maßgebliche Nachteile bestehen jedoch in dem Verlust der physikalischen Interpretierbarkeit der Modelle sowie der zumeist Notwendigkeit großer Mengen an Daten. Um die beschriebenen Vorteile zusammenzuführen und die Nachteile zu beseitigen, bietet sich eine Symbiose beider Verfahren an. Dabei wird eine hybride Verwendung ausgenutzt, um beispielsweise eine verbesserte Genauigkeit unter Beibehaltung der physikalischen Interpretierbarkeit zu ermöglichen. Der Anteil des jeweiligen Verfahrens ist variabel und abhängig von der betrachteten Zielgröße und Anwendung zu wählen. Das Ziel ist somit eine Optimierung mechatronischer Systeme durch die Hinzunahme von Verfahren des Maschinellen Lernens. Die erarbeiteten Verfahren werden an zwei verschiedenen Prüfständen entwickelt und analysiert. Dabei wird zum einen ein grundlegendes Systeme, anhand eines inversen Doppelpendels betrachtet. Zum anderen dient ein elektrisch angetriebenes Serienfahrzeug als anwendungsnaher Versuchsträger. Je nach Prüfstand werden unterschiedliche Zielgrößen adressiert und die entsprechende Kombination der Verfahren optimiert. Schließlich werden die Methoden auf die Echtzeitsysteme der Prüfstände übertragen. Abschließend werden die erarbeiteten Herangehensweisen mit bestehenden Verfahren verglichen und die verbesserte Güte aufgezeigt.
    Team: Zygimantas Ziaukas
    Year: 2020
    Sponsors: Leibniz Young Investigator Grant
    Lifespan: 2 Jahre

Medizintechnik & Bildverarbeitung

  • OPhonLas: OCT-controlled laser ablation for vocal fold phonation
    This EFRE-funded project aims to develop a rigid, anatomically shaped laryngoscope equipped with a controllable ablation laser for laryngeal surgery. In addition to the application on resting vocal folds, a laser cut is also to be carried out during a phonation - i.e. on oscillating vocal folds. This enables the treatment of certain pathologies and makes the functional success of the therapy directly visible. The high demands on the real-time control of the laser require the fusion of stereo image data and optical coherence tomographies.
    Team: Sontje Ihler, M. Sc., Max-Heinrich Laves, M. Sc.
    Year: 2017
    Sponsors: EFRE (Europäischer Fonds für regionale Entwicklung)
    Lifespan: 3 Jahre
  • Indiheart - Development of a 3D-Bioextrusion-Printer for growing individualized heart-muscle-tissue to treat failing heart syndrome
    Within this interdisciplinary project, a manufacturing process for growing individualized heart-muscle implants for failing heart syndrome therapy is being developed in close cooperation with the University Medical Center Göttingen (director: Prof. Dr. med. Wolfram-Hubertus Zimmermann), the Max-Planck-Institute for Dynamics and Self-Organization (director: Prof. Dr. rer. nat. Eberhardt Bodenschatz), as well as the German Primate Center (director: Prof. Dr. med. vet. Rabea Hinkel). The force created by the artificial heart-muscle patch is supposed to restore sufficient blood-pumping abilities. At the imes, the research is focused on the development of a robot-based, fully sterilizable 3D-bioextrusion-printer and its controls. Main milestone within the current phase of the project is the automation of the printing process, to ensure precision and quality of the artificial heart-muscle-tissue.
    Team: Leon Budde, M. Sc.
    Year: 2021
    Sponsors: BMBF